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Abstract. This paper discusses the use of a Genetic Algorithm (GA) to evolve 
waypoint-based racing lines for computer-controlled cars in an online game. 
One goal is the reduction of developer effort, in order to automatically produce 
varied and effective racing lines for numerous different vehicle configurations 
on various racetracks. Another goal is to assess the design of fitness functions 
in order to evolve varying strategies and driving styles for the computer-
controlled drivers. The effectiveness of this approach is assessed, and the 
evolved driving strategies on a number of specific racetracks are analysed. 
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1   Introduction 

In recent years, various Computational Intelligence (CI) techniques have been applied 
to computer racing games, with the dual purpose of improving the games themselves 
and of using the games as an appropriate platform to research CI techniques. Togelius 
et al. [1] provide a useful overview of recent work in the area, while making the point 
that CI techniques have been “conspicuously absent” in commercial games. 

Racing games, like many other computer game genres, don’t necessarily require CI 
techniques in order to produce better-performing computer-controlled agents, since 
the game can easily enough beat the human player through subtle cheating [1]. 
Rather, the motivation is often to make the behaviour of the computer player more 
interesting, varied and believable. Evolutionary algorithms may be used as search-
based design tools rather than as traditional optimisers. 

Modern racing games are increasingly sophisticated, employing complex physical 
driving models and collision systems – as a result, it is increasingly difficult to 
produce effective computer agents through the use of scripted AI – this is one of the 
underlying reasons for the increased interest in CI techniques in this area [2]. 

In this paper, the use of Genetic Algorithms (GA) as part of a multi-layer CI 
approach to evolving waypoint-based racing drivers is discussed. The platform for 
this research is the game Darkwind: War on Wheels, which is an online racing and 
combat driving game developed by the author since 2005 [3, 4]. Darkwind supports a 
detailed physical driving model and provides a set of demanding off-road racetracks. 



Since it is an online game with hundreds of currently active players, and in which 
upwards of 1000 separate races are run every week, Darkwind also provides an 
excellent opportunity to compare computer agents with expert human players – unlike 
other academic CI racing platforms, which have had to make do with one or two 
players with only a few hours play-time experience. 

Although we use a number of scripted, mimicry and evolutionary techniques in 
Darkwind in order to produce challenging computer opposition in combat and race 
situations, the focus of this paper is on the evolution of waypoints for computer agents 
in control of a variety of different vehicles on a variety of racetracks. From the 
perspective of the game developer, one of the main motivations for this research is to 
reduce the development effort required to produce effective drivers: the GA approach 
is used in its classic optimisation role. It is also a goal to efficiently produce a 
database of interesting and varied sets of waypoints that can be used to control 
different cars in a race, making the computer-controlled cars act less predictably. By 
varying the fitness function of the GA, we are able to produce behaviours that are 
optimised in different ways, and that therefore exhibit different driving styles. 

2   Related Research 

A number of previous researchers have used CI techniques to evolve effective and 
interesting computer agents for racing games. Several have used virtual range-finders 
as the primary input to neural networks which control the steering and 
acceleration/braking [5, 6] or to provide collision-warning systems [7]. Some have 
used pre-calculated waypoint data as inputs in addition to range-finders, but have not 
attempted evolution of the waypoints themselves [8]. Reasonable success has been 
reported at evolving track-specific drivers, although creating generalised controllers 
capable of performing well on multiple tracks (or on previously unseen tracks) has 
proven elusive [5]. At least one commercial game (Colin McRae Rally) has reportedly 
used neural networks to control computer drivers, although details are sketchy [9].  

Recent work by Saez et al. has applied GAs to the car driving task. Their genome 
codified steering and acceleration decisions at 5 metre intervals on a racetrack, and 
showed some promise although a serious lack of robustness was reported (their 
system was not able to deal with noisy data or varied initial car state, and was unable 
to attempt multiple laps) [10]. 

In the majority of previous research, the design of the control system under 
evolution has been quite low-level and not human-readable. Therefore prior 
knowledge has not typically been used to seed the initial state of the control system, 
and randomised initial parameters have been used. This certainly leads to impressive-
looking fitness curves, which belie the fact that the main bulk of the generations being 
produced are totally inadequate at their task. Since our own optimisation begins with 
a quite effective manually defined initial generation, we witness a far shallower 
fitness curve. 



3   Evolving Racetrack Knowledge 

3.1   Physical Model 

In our research, a sophisticated physical model of vehicle dynamics has been 
employed: this includes an approximation of vehicle aerodynamics (downforce, air 
resistance and slipstreaming), variable tyre characteristics (lateral and longitudinal 
deformations, static and kinetic friction, performance degradation and damage), 
suspension (length, spring forces), engine performance curves, and rigid-body 
collision resolution. In addition, our racetracks employ a number of types of surface 
with varying friction and solidity, and contain not only obstacles but also in some 
cases quite varied terrain formations.  

The complexity of this system provides a challenging game with keenly contested 
races and on-line lap records: on many tracks, the emphasis is on maintaining a good 
velocity while cornering, or on attacking a terrain feature such as a jump in an optimal 
fashion. On other tracks the emphasis may involve minimizing tyre-wear. This 
complexity means that creating effective and interesting computer drivers through 
scripted calculations or algorithmically defined racing lines is infeasible. 

3.2   Vehicle Control Algorithm 

Unlike previous CI researchers, our approach has assigned the actual steering and 
acceleration/deceleration decisions to a higher-level function where we believe it is 
more appropriately controlled. Rather than evolving low-level steering decisions, we 
therefore evolve representations of effective racing lines for specific track/car 
combinations through the use of waypoints. This provides an evolved understanding 
of the overall shape of the track, rather than attempting to produce a controller that 
navigates with a paucity of positional information or knowledge of the ‘big picture’. 

Our computer drivers use these waypoints during the game to influence their 
behaviour as they navigate static and moving obstacles on the track. Steering 
behaviour is calculated based on the location of the waypoints and on the linear and 
angular momentum of the car, rather than being directly controlled by a neural 
network. We use collision-prediction in order to take evasive action, but with 
waypoints still providing the over-riding goals. This is quite different to previous 
research involving waypoints and collision prediction, which has afforded equal 
prominence to both in the evolution of the control system [5], and which has not 
allowed for evolution of the waypoints themselves [5, 8]. 

Fig. 1 illustrates a set of waypoints on a tight, fast corner, which has concrete 
blocks at its apex. The waypoints encourage the car to approach the corner from the 
outside of the track, and to turn into the corner early and gently (aiming for waypoint 
9), thereby minimising skidding and maintaining a good speed. The blocks are 
avoided by the influence of waypoint 10; this waypoint also encourages the car to hit 
an ideal speed of 96mph, which proves low enough for this specific car with these 
specific tyres to exit the corner without crossing from the tarmac surface to the sandy 



margin and concrete barriers on the right. Waypoints 11, 12 and 13 encourage the car 
to stay on the tarmac, and the car exits on the ideal side of the road for the subsequent 
straight section and left-turning corner (out of picture). The final exit speed of 78mph 
is considered almost-optimal for this vehicle. 

 

 

Fig. 1. An evolved set of racing waypoints on a dusty tarmac surface. The car aims for the 
centre of each waypoint (numbered 8 through 13) while targeting the waypoint’s indicated 
speed. As soon as the boundary of a waypoint is crossed, the proceeding waypoint becomes the 
target. The position, size, and target speeds of the waypoints are evolved using a GA. The 
position and speed of a car over a period of 8 seconds of the game is illustrated. 

Two types of collision prediction operate as interrupts to the higher level waypoint-
following goal. Firstly, range finders are cast into the world, with directions and 
distances based on the momentum of the car; where a static object is identified 
nearby, waypoint steering is over-ridden with collision-avoidance steering. Secondly, 
the momentum of all nearby moving objects (i.e., other vehicles) is assessed for a 
period of two seconds into the future, and where the bounding boxes overlap that of 
the car under control, evasive steering takes over. 

3.3   Evolutionary Approach 

Each GA genome consists of a set of waypoints stored as real numbers. The data for 
each waypoint consists of: centre position (x, y), dimensions (x, y), and target speed. 



Depending on the size and complexity of the racetrack, the number of waypoints used 
may vary from about 20 to about 60. All genomes in a population contain the same 
number of waypoints.  

Each candidate genome is tested 10 times, with the first lap in each sequence 
disregarded so as to allow the cars to achieve optimum speed by the start of a timed 
lap. Collision damage is ignored during training, although tyre-wear due to excessive 
skidding or driving over rocky ground is not. Even without damage, a car suffering a 
collision will obtain a very poor laptime due to lost momentum, spinning and so on – 
we did not wish to further penalise all subsequent laps by damaging the car’s physical 
condition. 

Our algorithm uses ranked rather than fitness-proportionate selection, in order to 
discourage premature convergence. Elitism is applied so that the best ranking 50% of 
the population is copied unaltered to the proceeding generation, while the remaining 
50% is discarded and replaced with new genomes. Parents for each new genome are 
selected from the elite 50%, with a bias towards the highest ranked. Crossover is 
chosen at a random point in the gene, but only where the following additional 
crossover compatibility test is passed.  

 
For a crossover point at waypoint x to be valid for parents p1 and p2, where p1[x] 

represents waypoint x of parent p1: 
1. The distance from p1[x-2] to p2[x] must be larger than the distance from     

p1[x-1] to p2[x] 
2. The distance from p1[x-1] to p2[x+1] must be larger than the distance from 

p2[x] to p2[x+1] 
This test ensures that the crossover point does not cause the car to turn around on 

the racetrack and start driving in the wrong direction. 
 
The fitness function itself may be chosen so as to evolve drivers with different 

characteristics; this, and other parameters under investigation, is discussed in the next 
section. 

4   Results 

4.1   Overall Performance 

A primary performance measurement involves the assessment of laptimes achieved 
by evolved sets of waypoints versus the original manually defined waypoints 
deployed by the racetrack designers. Having experimented with various mutation 
schema, numbers of waypoints, fitness functions and population sizes, an 
improvement of between 8% and 30% in average laptime over 10 laps has been 
observed on all racetracks and vehicle types. 

The most effective GA parameters for optimising on each track and vehicle do 
vary somewhat, but this typically affects the efficiency of search rather than the final 
result. The computer has not yet beaten the best laptimes recorded by human players 



over the past 4 years. It should be noted that in many cases, close to 100,000 laps 
have been attempted by human players on each racetrack. 

4.2   Influencing Driving Styles 

By varying the fitness function, we can evolve driving styles varying from cautious 
(by defining fitness as the worst laptime of the 10 laps recorded), to optimal on 
average (by using the average laptime), to risk-taking (by using the best laptime). This 
allows different personalities to be presented in the game, and perhaps for some race-
time strategy to be attempted, depending on the current state of the race. 

Fig. 2 illustrates the same corner as that shown in Fig. 1. The fitness function has 
been changed from average laptime to best laptime, and therefore a more aggressive 
racing line has evolved, which encourages the car to drive closer to the dangerous 
apex and hold a higher speed, risking tyre-wear and spin-outs, yet performing better 
when successful, and yielding a higher exit speed from the corner. 

 

 

Fig. 2. The same corner is depicted as in Fig. 1. In this case, the best rather than average 
laptime has been used as the fitness function. 

Fig. 3 shows the average fitness of the population and best laptime achieved 
overall using (A) best laptime as fitness function, and (B) average laptime as fitness 
function.  



In (A), we evolve a risk-taking strategy which quickly converges on good laptimes 
while maintaining a poor average (since this contains frequent crashes and spin-outs). 
By using the average of 10 laptimes as the fitness function (B) a better result is 
obtained on average, in which the occurrence of disastrous errors is minimised at the 
expense of optimal laptime. Also shown is the fitness of the original, developer-
defined (Manual) waypoints, and the best ever laptime recorded by a human over the 
past 4 years. 

 

 

Fig. 3. The best laptime taken from 10 attempts is used as the fitness function in (A), while the 
average of 10 attempts is used as the fitness function in (B), yielding distinct behaviours. 

4.3   Expert Knowledge of Racetracks  

Most of the racetracks in the game have a number of critical features where the 
success or failure of a race is often decided. Only the leading human players have 
obtained mastery of these features, and certainly without GA optimisation it is very 
unlikely that computer drivers will perform well on them. In the following sub-
sections we explore a few racetracks on which experiments have been run. 

4.3.1   Dirt Racing Track 
This is a dusty, bumpy track with many elevation changes. The final straight leading 
to the finishing line is a steep, bumpy hill with an adverse camber, which tends to tip 
the car outwards into a collision course with the finishing line. Compensating for this 
often causes computer drivers and novice players to oversteer or spin their car and 
lose their momentum. The evolved waypoints encouraged the computer driver to stay 
close to the left side of the track (which is the higher ground) and to avoid straying 



onto the sloping part of the road. This was achieved through use of a large number of 
tightly packed waypoints close to the left hand edge. 

Halfway around this track is a large bump with a pit on one side. Taking this 
section badly typically means a higher jump, heavier landing, and a substantial loss of 
momentum. The evolved computer drivers were found to swing wide before the bump 
and then attack its low-point at an approximately 45 degree angle: this minimizes the 
height that the car jumps, and maximizes its exit speed.  

On this circuit, the best laptime recorded using the evolved racing lines with a 
muscle-car was 32.03 seconds, which is a 10.44 seconds (24.6%) improvement on the 
developer-defined waypoints. The severely bumpy/hilly nature of this track made the 
original waypoints generalize poorly for the various vehicles – the efficiency of using 
GAs to produce per-vehicle optimised versions is clear. The best ever human-
recorded laptime using the same vehicle is 30.87 seconds. 

4.3.2   Northern Speedway 
This is a broadly circular circuit with a very loose surface (desert sand) – it’s an easy 
track to drive but a difficult one to drive optimally. On this circuit, the evolved racing 
lines included power-slides (drifts) on the two tightest bends – the waypoints were 
found to be positioned several metres inside the apex, so that the cars used 
understeering to their advantage to navigate the corners at maximal speed while 
staying close to the inside of the track.  

Overall, the best time achieved by the computer when controlling a fast vehicle 
was 24.01 seconds, a reduction of 2.67 seconds (9.9%) when compared with the time 
achieved using the original, developer-defined waypoints. The best-ever human 
laptime on this track using the same car is 21.69 seconds. 

4.3.3   Northern Foothills Racetrack 
This is a tight, fairly smooth racetrack with sharp corners. The centre of the track has 
a good surface but this is typically quite narrow and the margins are sandy – it is very 
detrimental to a laptime if a car strays onto the margins. The computer-controlled cars 
are notoriously ineffective on this circuit, due to the difficulty experienced during 
development in manually defining an optimal set of waypoints. 

On this circuit, the best laptime recorded using the evolved racing lines with a 
road-car was 56.93 seconds, which is an 11.98 seconds (17.4%) improvement on the 
developer-defined waypoints. The best ever human-recorded laptime is 53.56 
seconds. 

One hairpin corner in particular is difficult to drive well due to its sandy surface, 
and can be exited at above 50mph if taken well and if the narrow tarmac track-centre 
is successfully targeted on the exit. Taken badly, a very low exit speed or a spin-out 
are common.  Fig. 4 illustrates an evolved set of waypoints being used in-game on 
this corner. 

 



 

Fig. 4. A difficult hairpin on the Northern Foothills Racetrack. To drive this corner well, a car 
must target the narrow tarmac centre-line on the exit; this is difficult to do at high speed since 
the corner itself is so severe and surfaced with sand. The evolved waypoints succeed in 
obtaining an exit speed of 45mph in this sample run. Note that the strangely-positioned 
waypoint 12 is ‘junk’ data that never affects the racing line due to its overlap with waypoint 11. 

5   Conclusions & Future Work 

The research described in this paper shows that a GA approach to evolving racetrack 
knowledge has great potential – with improvements of up to 30% over the laptimes 
achieved when developer-defined waypoints were used. Through the use of varied 
fitness functions, this approach also enables the evolution of different driving styles 
and therefore more interesting opponents for the human players. 

Our evolved waypoints have not yet beaten the best laptimes recorded by human 
players over the past 4 years. Observation of the computer driving clearly shows that 
this is due to the waypoint approach providing a generic understanding of a racetrack 
that doesn’t take into account unique situations during specific test-runs. A clear 
example of this is on our “Dry Lake Racetrack” which is a fast circuit with concrete 
blocks positioned in the middle of the ideal racing line: the evolved waypoints cut 
directly through some of the blocks, which works well at high speeds due to lateral 
motion of the car on the dusty surface, yet fails at low speeds – the car suffers a head-
on collision with the blocks. Some further work is needed here, probably in the form 
of further A.I. layers that deal with transient conditions. The current collision-
prediction systems are an example of an additional layer already in use in this way. 

One of the interesting results observed is the variety of different racing lines 
evolved for different vehicles on a racetrack. Minimum-distance racing lines were 
often evolved for slower vehicles, while faster vehicles preferred narrower turns 



which afford maximum speeds. The extent to which bumps and terrain-cover changes 
were avoided also varies by vehicle type and tyre characteristics. 

One of the ideas that we are currently experimenting with is the use of split-times 
rather than complete lap-times in order to define sub-genome fitness values and use 
these to control crossover decisions during the breeding process. 

The Darkwind game allows certain car characteristics to be modified by the 
players: for example, tyre pressures and suspension stiffness. We intend to design a 
GA-based system for optimising vehicle configurations on a per-racetrack basis. A 
similar approach has shown good performance when applied to car settings in a 
Formula One simulator [11]. 

Future work will also focus on multiple-car (i.e., racing) situations rather than 
single-car experiments. In this case, one of the characteristics that may be evolved for 
each waypoint is the decision about whether it is safe to undertake evasive steering – 
at certain dangerous parts of some racetracks, adherence to the racing line is critically 
important in order to avoid collisions with obstacles, and colliding with other cars 
would be a lesser problem. Another avenue worthy of investigation is that of the 
modification of steering behaviour in order to make optimal use of slipstreaming with 
nearby cars of similar momentum. 
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